

The Complex Interplay of Cognition, Emotion, and Behavior in Children with Down Syndrome: A Comprehensive Review

Toyuri Yeztriski

Department of Psychology, De La Salle University, 2401 Taft Avenue, Malate, Manila 1004, Philippines

Abstract

Down syndrome (DS), resulting from trisomy of chromosome 21, is the most common genetic cause of intellectual disability. The unique neurobiological profile associated with DS gives rise to a distinctive behavioral phenotype characterized by relative strengths in social functioning and pronounced challenges in expressive language, executive function, and psychological well-being. This review synthesizes current research on the psychological and behavioral profile of children with DS. We explore the cognitive underpinnings, including the dissociation between verbal and visuospatial processing, and the profound impact of executive dysfunction on daily functioning. The article delves into the socio-emotional domain, examining the purported social strengths while highlighting the risks for autism spectrum disorder, attention-deficit/hyperactivity disorder, and internalizing disorders like anxiety and depression. Furthermore, we analyze maladaptive behaviors, including non-compliance, impulsivity, and the emergence of challenging behaviors, linking them to underlying cognitive and communication deficits. The review also discusses the critical role of co-occurring medical conditions, such as sleep apnea and hearing loss, in exacerbating behavioral challenges. Finally, we outline evidence-based intervention strategies that target cognitive, communicative, and emotional regulation skills. By integrating findings from neuropsychology, behavioral science, and genetics, this paper provides a holistic overview of the mental and behavioral landscape of children with DS, emphasizing the need for a multidimensional, strengths-based approach to support and intervention. This review further incorporates a detailed analysis of the neurobiological underpinnings of executive dysfunction, explores the significant impact of sensory processing differences, and underscores the critical role of family systems and parental well-being in shaping developmental outcomes. The paper concludes with a forward-looking discussion on the implications for gene-brain-behavior research and the necessity of lifelong, adaptable support systems.

Keywords

Down Syndrome, Behavioral Phenotype, Intellectual Disability, Executive Function, Social Cognition, Psychopathology

1. Introduction

Down syndrome (DS), with an estimated prevalence of 1 in 700 to 1,100 live births, is the most prevalent chromosomal condition associated with intellectual disability (ID). The syndrome's etiology, the presence of a third copy of chromosome 21 (trisomy 21), leads to a cascade of neurodevelopmental alterations that result in a specific and recognizable behavioral phenotype. A behavioral phenotype refers to the heightened probability that people with a specific genetic syndrome will exhibit certain behavioral and cognitive outcomes [1].

Historically, individuals with DS were often homogenized within the broader category of ID. However, over the past three decades, research has increasingly focused on delineating the unique cognitive and behavioral profile associated specifically with DS. This profile is not deterministic but probabilistic, representing a pattern of relative strengths and weaknesses that distinguishes them from individuals with ID of other etiologies. Understanding this phenotype is crucial for clinicians, educators, and families to develop appropriate expectations, implement effective interventions, and provide targeted support.

The classic DS behavioral phenotype is often described as including a friendly, sociable disposition with relative strengths in visual processing and social motivation, coupled with significant weaknesses in expressive language, verbal working memory, and several domains of executive function (EF). However, this "happy and sociable" stereotype can be misleading and may obscure the very real risks for co-occurring mental health conditions, such as anxiety, depression, and autism spectrum disorder (ASD) [2].

This article aims to provide a comprehensive review of the psychological functioning and behavior of children with DS. We will first outline the neurocognitive profile, focusing on the dissociation between language and visual-spatial skills and the central role of executive dysfunction. Subsequently, we will delve into the socio-emotional world of children with DS, exploring their strengths in social relatedness and the vulnerabilities that can lead to psychopathology. A section on common behavioral challenges will link these behaviors to their underlying cognitive and communicative roots. We will also examine the moderating role of co-occurring medical conditions. Finally, we will discuss the

implications of this knowledge for designing evidence-based interventions [3]. Throughout, we will integrate recent research findings and use tables and figures to summarize key concepts and data.

This review seeks to move beyond a mere cataloging of traits to present a dynamic, interactive model of development in DS. We posit that behavior is the emergent product of a continuous transaction between neurobiological predispositions, cognitive-processing capacities, and environmental demands. A key focus will be on elucidating the mediating mechanisms—particularly executive functions and social cognition—that bridge underlying deficits to observable behavior. This perspective is essential for dismantling stereotypes and fostering genuinely individualized, cross-disciplinary support strategies that span medicine, psychology, education, and therapy.

1.1 The Neurocognitive and Linguistic Profile

The cognitive profile of children with DS is characterized by significant variability, yet consistent patterns of strengths and weaknesses emerge across studies. Overall cognitive ability typically falls within the mild to moderate range of ID, but this global score masks a highly uneven profile [4].

1.2 Intellectual and Learning Profiles

The cognitive profile is marked by a significant weakness in verbal domains compared to non-verbal domains. This discrepancy is evident even in early childhood. Young children with DS often show better performance on tasks of visual recognition, matching, and imitation than on tasks requiring verbal comprehension or expression. This relative strength in visual-spatial processing can be leveraged in educational settings, for instance, by using visual schedules, picture-based communication systems, and hands-on learning activities.

However, it is critical to note that non-verbal IQ is also impaired relative to typically developing peers, and the apparent "strength" is only relative to their own significant verbal deficits. Furthermore, as children with DS age, the gap between their mental age and chronological age widens, and learning plateaus can occur in adolescence, particularly in abstract reasoning.

These cognitive patterns directly shape learning styles and necessitate specific pedagogical approaches. Children with DS often exhibit a global processing bias, demonstrating proficiency in grasping the overall gestalt or context of a situation but struggling with the sequential processing and fine-grained analysis required for reading phonetics or solving multi-step math problems. This learning profile underscores the effectiveness of teaching reading through a whole-word (sight-word) approach initially, while gradually introducing phonics in a highly structured and explicit manner. In mathematics, concepts are often better understood than computational procedures, suggesting a need for hands-on, functional math instruction using manipulatives. As academic demands increase in adolescence, the focus of education should strategically shift from purely academic curricula to a greater emphasis on functional life skills, vocational training, and social competence, ensuring that learning remains relevant and empowers them for greater independence in adulthood [5].

1.3 Language Development

Language is one of the most significantly impaired domains in DS. There is a well-documented and profound asynchrony between receptive and expressive language skills, and between vocabulary and grammar.

Receptive vs. Expressive Language: Receptive language skills (understanding) are generally more advanced than expressive language skills (speaking). A child with DS may understand multi-step commands and a large vocabulary but be unable to formulate a simple sentence to express their needs.

Speech Production: Expressive language is hampered by both motor and cognitive factors. Dysfluency, poor speech intelligibility due to articulatory and phonological problems, and apraxia of speech are common. This motor planning deficit contributes significantly to the frustration experienced by many children with DS when they cannot make themselves understood [6].

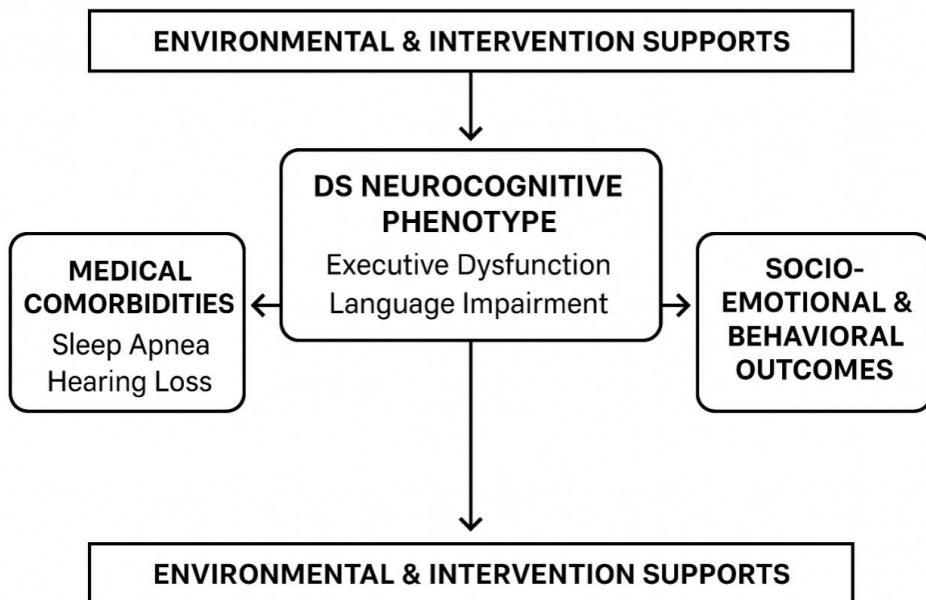
Grammar and Syntax: Perhaps the most striking deficit is in morphosyntax—the use of grammatical markers and sentence structure. Children with DS exhibit particular difficulty with tense markers, plurals, and complex syntactic constructions, a deficit that is more severe than would be predicted by their general cognitive or vocabulary levels.

1.4 Executive Function (EF)

Executive functions are a set of cognitive processes that are essential for planning, focusing attention, remembering instructions, and juggling multiple tasks successfully. EF deficits are a core feature of the DS neurophenotype and have a cascading effect on learning, behavior, and adaptive functioning.

Working Memory: Deficits are most pronounced in the verbal domain. The phonological loop, which holds and manipulates speech-based information, is particularly impaired, impacting following instructions, mental arithmetic, and new word learning. Visuospatial working memory is also impaired, but often to a lesser degree than verbal working memory.

Inhibitory Control: Children with DS show significant difficulties with response inhibition—the ability to suppress a dominant or prepotent response. This manifests as impulsivity, difficulty taking turns, and a tendency to engage in off-task behavior [7].


Cognitive Flexibility/Shifting: The ability to switch between mental sets or tasks is impaired. This leads to perseveration, rigid thinking, and significant difficulty adapting to changes in routine or transitioning between activities.

Planning and Organization: Tasks that require multi-step planning and organization, such as solving a complex puzzle or planning a school project, are extremely challenging.

These EF deficits are not merely academic; they are directly linked to the behavioral challenges discussed later, including non-compliance, emotional outbursts, and difficulty with social interactions.

1.5 Neurobiological Underpinnings of Executive Dysfunction

The pervasive executive function deficits observed in DS are firmly rooted in specific neuroanatomical and neurophysiological abnormalities. Neuroimaging studies have consistently identified reduced volume and altered neuronal density in the prefrontal cortex (PFC), the brain's central executive hub. Within the PFC, the dorsolateral prefrontal cortex is critically implicated in working memory and planning, while the ventrolateral and orbitofrontal regions are key for inhibitory control and emotional regulation. Furthermore, the white matter tracts that connect the PFC to subcortical structures like the basal ganglia and the cerebellum (which is notably smaller in DS) show abnormalities in myelination and integrity [8]. This disrupted neural circuitry leads to inefficient communication between brain regions, hampering the seamless integration of information, regulation of behavior, and adaptation to new tasks. The neurotransmitter systems, particularly those involving dopamine and norepinephrine which modulate prefrontal activity, are also thought to be dysregulated. Understanding this neurobiological basis reframes executive dysfunction from a behavioral issue to a neurologically-based characteristic, guiding interventions towards strategies that either circumvent these neural challenges or provide external support for these internal cognitive processes.

Figure 1. A Conceptual Model of the Interplay of Factors Influencing Behavior in Down Syndrome

Figure 1 is a conceptual model used to illustrate the multiple factors that influence the socio-emotional and behavioral outcomes of individuals with Down Syndrome (DS) and their interrelationships. The behavioral and socio-emotional outcomes of children with Down syndrome are influenced by neurocognitive characteristics, medical comorbidities, and external support. Appropriate environment and intervention can significantly improve their developmental trajectory.

2. The Socio-Emotional and Behavioral Phenotype

Beyond cognition, the DS behavioral phenotype encompasses a distinct pattern of socio-emotional functioning that includes both strengths and vulnerabilities.

2.1 Social Strengths and the "Social Personality"

A hallmark of the DS behavioral phenotype is a heightened sociability and interest in people. From infancy, children with DS often show more looking at faces, more smiling, and better use of eye contact than other children with ID. They are frequently described as charming, affectionate, and motivated to engage with others. This social strength is a key asset and can be a protective factor, facilitating social inclusion and positive relationships [9].

However, this strength has nuances. While they may be socially motivated, their social *cognition*-the ability to understand the thoughts, feelings, and intentions of others-is impaired. Their understanding of complex emotional states, deception, and sarcasm is limited, and they can be overly trusting or naive, which poses risks for victimization.

2.2 Co-occurring Mental Health Conditions and Psychopathology

The historical stereotype of the perpetually "happy" individual with DS is a dangerous oversimplification. Children with DS are at an increased risk for a range of mental health disorders.

Autism Spectrum Disorder (ASD): The co-occurrence of DS and ASD is now well-established, with prevalence estimates ranging from 16% to 42%. This "dual diagnosis" presents a unique profile. These children often exhibit more pronounced social withdrawal, stereotypic behaviors, and regression in skills compared to children with DS alone. The presence of ASD can mask the typical social strengths of DS, leading to delayed diagnosis and inappropriate support.

Attention-Deficit/Hyperactivity Disorder (ADHD): Symptoms of inattention, hyperactivity, and impulsivity are very common in young children with DS, often meeting diagnostic criteria for ADHD. However, the presentation may differ; hyperactivity can sometimes decrease in adolescence, while inattention and impulsivity persist [10].

Anxiety and Depression: As children with DS mature into adolescence and young adulthood, their risk for internalizing disorders increases significantly. They may develop obsessive-compulsive behaviors, generalized anxiety, and depression. This is often linked to a growing awareness of their limitations, social isolation, and biological vulnerabilities. Depressive symptoms in DS can present as social withdrawal, loss of interest in previously enjoyed activities, mutism, and psychomotor retardation. Anxiety in DS often manifests in observable behaviors such as rigid adherence to routines, extreme distress over minor changes, specific phobias (e.g., loud noises), and compulsive rituals. The root of this anxiety is frequently a combination of cognitive factors (difficulty predicting outcomes, poor problem-solving skills) and repeated negative experiences (e.g., communication failures, social rejection). Depression may present atypically; rather than verbalizing sadness, a teenager with DS might show increased irritability, aggression, apathy, or regression in self-care skills. Diagnosing these internalizing disorders is challenging due to the diagnostic overshadowing, where symptoms are incorrectly attributed to the intellectual disability itself rather than a co-occurring, treatable condition. Furthermore, their limited language ability often precludes self-reporting of mood states, requiring clinicians and caregivers to be astute observers of behavioral changes and nonverbal cues.

Challenging Behaviors: Non-compliance, stubbornness, and outbursts are frequently reported by parents and teachers. It is crucial to frame these not as willful disobedience but as "behavioral phenotypes" emerging from an interaction of underlying deficits. For example, "non-compliance" may stem from a failure to understand a complex verbal instruction (language deficit), an inability to shift from a preferred activity (EF deficit), or frustration from being unable to communicate (expressive language deficit). A critical framework for understanding challenging behaviors is the Functional Behavior Assessment (FBA). An FBA posits that all behavior serves a purpose, or function. For a child with DS, a tantrum might function to escape a demanding task, gain access to a desired item or attention, or communicate physical discomfort [11]. By systematically observing the antecedents (what happens before) and consequences (what happens after) the behavior, caregivers and therapists can hypothesize its function. This allows them to develop a Positive Behavior Support (PBS) plan that teaches a more appropriate, functionally equivalent skill (e.g., teaching the child to hand over a "break" card instead of screaming) while modifying the environment to prevent the behavior. This proactive, teaching-based approach is far more effective and ethical than reactive punishment.

3. The Impact of Co-occurring Medical Conditions

Behavior does not occur in a biological vacuum. The high prevalence of co-occurring medical conditions in DS profoundly influences psychological and behavioral outcomes.

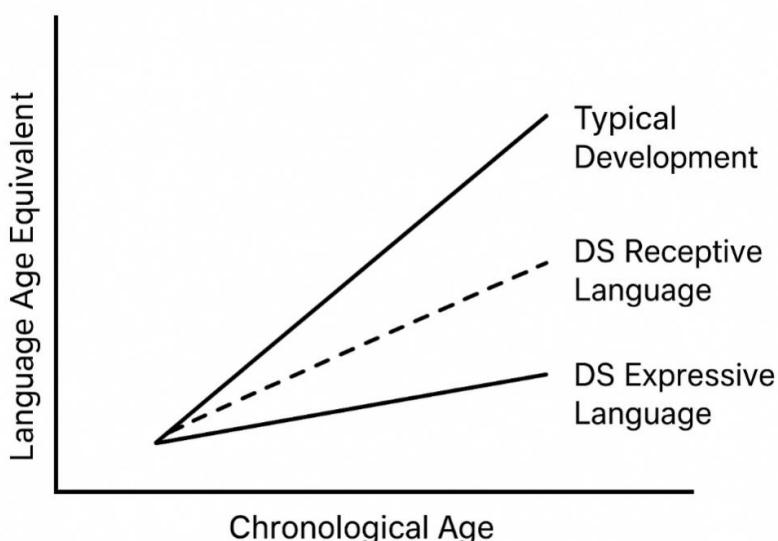
Sleep Disordered Breathing (SDB): Obstructive sleep apnea (OSA) affects over 50% of children with DS. The chronic sleep fragmentation and intermittent hypoxia associated with OSA have a direct, detrimental impact on the brain. SDB is strongly linked to daytime sleepiness, inattention, irritability, emotional lability, and deficits in EF and memory. Effectively treating OSA with tonsillectomy or CPAP can lead to dramatic improvements in behavior and cognitive function.

Hearing Loss: Conductive and sensorineural hearing loss is extremely common due to anatomical differences and middle ear effusions. Even mild, fluctuating hearing loss can significantly impair language development, auditory processing, and social engagement, leading to frustration and behavioral problems.

Hypothyroidism: Thyroid dysfunction is common in DS and can cause symptoms that mimic depression (lethargy, weight gain) or exacerbate cognitive slowing. Regular screening is essential [12].

Sensory Processing Differences: Beyond the well-documented medical conditions, many children with DS exhibit differences in sensory processing-the way the nervous system receives, organizes, and responds to sensory input from the environment and the body. These differences can significantly impact behavior, attention, and emotional regulation. Some children may demonstrate sensory over-responsivity, becoming easily overwhelmed by bright lights, loud noises, certain textures of food or clothing, or light touch, leading to avoidance, withdrawal, or meltdowns. Others may show sensory under-responsivity, appearing lethargic, unresponsive to their name being called, or having a high pain

tolerance. Sensory seeking behaviors are also common, such as constant chewing on non-food items, rocking, spinning, or crashing into furniture, as the child attempts to meet their nervous system's need for more intense input. Recognizing these sensory profiles is essential. When a child with DS refuses to wear certain clothes, it may not be stubbornness but tactile defensiveness. When they cover their ears in a noisy cafeteria, it is a genuine physiological reaction to auditory overload. Sensory integration therapy and simple environmental modifications (e.g., providing noise-canceling headphones, chewable jewelry, or movement breaks) can dramatically reduce distress and improve participation in daily activities.


Ignoring these medical comorbidities can lead to the misattribution of behavioral symptoms solely to the ID or "behavior problems," thereby missing a critical opportunity for effective treatment.

4. Intervention and Support Strategies

A multidisciplinary, proactive approach is essential for supporting the development and mental health of children with DS. Interventions should be tailored to their unique phenotype.

4.1 Early Intervention

Early, intensive intervention that targets language, motor skills, and cognition can help capitalize on neuroplasticity. Family-centered programs that coach parents on how to foster communication and learning are most effective.

Figure 2. Discrepancy Between Receptive and Expressive Language Abilities in Down Syndrome vs. Typical Development

Figure 2 is a comparison of language development trajectories, used to illustrate the difference in the speed of language development between children with typical development and children with Down syndrome (DS). Children with Down syndrome generally lag behind typical children in language development. Both their receptive and expressive language development lines are below the typical developmental line. Receptive language > Expressive language: Children with Down syndrome generally "understand" more than they "speak." This is one of the most typical patterns in the language characteristics of Down syndrome.

4.2 Targeting Language and Communication

Given the profound expressive language deficits, augmentative and alternative communication (AAC) strategies are vital. These can range from sign language (e.g., Makaton) to picture exchange systems (PECS) and speech-generating devices. These tools reduce frustration by providing a means of expression and do not hinder speech development; in fact, they often facilitate it.

4.3 Supporting Executive Function

Interventions must structure the environment to compensate for EF deficits. This includes:

- Using visual schedules and timers to aid with transitions.
- Breaking down tasks into small, manageable steps.
- Providing clear, concise instructions.
- Teaching self-monitoring and self-regulation strategies explicitly.

4.4 Addressing Mental Health

Mental health conditions in DS are treatable. Behavioral therapies (e.g., CBT adapted for cognitive level), social skills training, and, when necessary, psychopharmacological interventions can be highly effective. It is crucial that mental health professionals have experience with and understanding of the DS phenotype.

4.5 Supporting the Family System

The well-being of a child with DS is inextricably linked to the well-being of their family. Parents and siblings face unique joys and challenges, including navigating complex medical and educational systems, managing financial pressures, and coping with societal stigma and concerns about the future. Parental stress is a significant factor that can indirectly affect the child's development and behavior. High levels of parental stress can reduce the capacity for responsive and consistent parenting, which is crucial for a child who relies heavily on structure and predictable responses. Therefore, comprehensive support for the child must include support for the family. This involves providing parents with accurate, up-to-date information, connecting them with peer support networks (both in-person and online), offering respite care services to prevent burnout, and ensuring they have access to counseling to process their emotions and build resilience. Sibling support groups can also be invaluable. Empowering the entire family system creates a more nurturing and stable environment, which is the single most powerful intervention for promoting positive long-term outcomes for the child with DS.

5. Conclusion

The psychological and behavioral profile of children with Down syndrome is a complex tapestry woven from threads of genetic predisposition, neurobiological development, cognitive strengths and weaknesses, and medical comorbidities. Moving beyond simplistic stereotypes is paramount. While their sociability and visual learning strengths are real assets, they coexist with significant challenges in language, executive function, and psychological well-being.

A deep understanding of this phenotype allows for a shift in perspective: what may be labeled as "challenging behavior" is often a symptom of an underlying neurocognitive deficit or an untreated medical condition. The most effective supports will be those that are proactive, multidimensional, and strengths-based. Future research should continue to explore the links between specific genes on chromosome 21 and elements of the behavioral phenotype, which could lead to more targeted, mechanism-based interventions. For now, a comprehensive, compassionate, and informed approach is our best tool for helping children with DS reach their full potential and lead fulfilling lives.

Looking ahead, research must further disentangle the gene-brain-behavior pathways in DS, potentially identifying molecular targets for cognitive or pharmacological therapies. Longitudinal studies are needed to understand the developmental trajectories into mid and late adulthood, particularly regarding dementia risk. From a practical standpoint, there is a pressing need to develop and validate assessment tools specifically tailored to the DS phenotype for more accurate diagnosis of co-occurring conditions like ASD and ADHD. Ultimately, supporting an individual with DS is not a short-term endeavor but a lifelong partnership. It requires a biopsychosocial framework that integrates medical care, cognitive and communication support, mental health services, sensory-friendly environments, and strong family and community networks. By embracing this complexity and focusing on abilities within the context of disabilities, we can ensure that every individual with Down syndrome is afforded the opportunity to lead a rich, engaged, and self-determined life.

References

- [1] Fidler, D. J. (2005). The emerging Down syndrome behavioral phenotype in early childhood: Implications for practice. *Infants & Young Children*, 18(2), 86-103. <https://doi.org/10.1097/00001163-200504000-00003>
- [2] Grieco, J., Pulsifer, M., Seligsohn, K., Skotko, B., & Schwartz, A. (2015). Down syndrome: Cognitive and behavioral functioning across the lifespan. *American Journal of Medical Genetics Part C: Seminars in Medical Genetics*, 169(2), 135-149. <https://doi.org/10.1002/ajmg.c.31439>
- [3] Chapman, R. S., & Hesketh, L. J. (2000). Behavioral phenotype of individuals with Down syndrome. *Mental Retardation and Developmental Disabilities Research Reviews*, 6(2), 84-95. [https://doi.org/10.1002/1098-2779\(2000\)6:2<84::AID-MRDD2>3.0.CO;2-P](https://doi.org/10.1002/1098-2779(2000)6:2<84::AID-MRDD2>3.0.CO;2-P)
- [4] Abbeduto, L., Warren, S. F., & Conners, F. A. (2007). Language development in Down syndrome: From the prelinguistic period to the acquisition of literacy. *Mental Retardation and Developmental Disabilities Research Reviews*, 13(3), 247-261. <https://doi.org/10.1002/mrdd.20158>
- [5] Kumin, L. (2006). Speech intelligibility and childhood verbal apraxia in children with Down syndrome. *Down Syndrome Research and Practice*, 10(1), 10-22. <https://doi.org/10.3104/reports.301>
- [6] Brock, J., & Jarrold, C. (2005). Serial order reconstruction in Down syndrome: Evidence for a selective deficit in verbal short-term memory. *Journal of Child Psychology and Psychiatry*, 46(3), 304-316. <https://doi.org/10.1111/j.1469-7610.2004.00352.x>
- [7] Daunhauer, L. A., Fidler, D. J., Hahn, L., Will, E., Lee, N. R., & Hepburn, S. (2014). Profiles of everyday executive functioning in young children with Down syndrome. *American Journal on Intellectual and Developmental Disabilities*, 119(4), 303-318. <https://doi.org/10.1352/1944-7558-119.4.303>
- [8] Rowe, J., Lavender, A., & Turk, V. (2006). Cognitive executive function in Down's syndrome. *British Journal of Clinical Psychology*, 45(1), 5-17. <https://doi.org/10.1348/014466505X29594>

- [9] Lee, N. R., Fidler, D. J., Blakeley-Smith, A., Daunhauer, L., Robinson, C., & Hepburn, S. L. (2011). Caregiver report of executive functioning in a population-based sample of young children with Down syndrome. *American Journal on Intellectual and Developmental Disabilities*, 116(4), 290-304. <https://doi.org/10.1352/1944-7558-116.4.290>
- [10] Naess, K. A. B., Lervåg, A., Lyster, S. A. H., & Hulme, C. (2015). Longitudinal relationships between language and verbal short-term memory skills in children with Down syndrome. *Journal of Experimental Child Psychology*, 135, 43-55. <https://doi.org/10.1016/j.jecp.2015.02.004>
- [11] Cebula, K. R., Moore, D. G., & Wishart, J. G. (2010). Social cognition in children with Down's syndrome: Challenges to research and theory building. *Journal of Intellectual Disability Research*, 54(2), 113-134. <https://doi.org/10.1111/j.1365-2788.2009.01215.x>
- [12] Warner, G., Moss, J., Smith, P., & Howlin, P. (2014). Autism characteristics and behavioural disturbances in ~500 children with Down's syndrome in England and Wales. *Autism Research*, 7(4), 433-441. <https://doi.org/10.1002/aur.1371>